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Abstract

EALP is an algorithm for allocating goods purchased at different mar-
ket prices between different customers, or different accounts of the same
customer, so that the average prices remain as close to each other as
possible.
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1 The Problem

The allocation problem entered my life back in the days of my internship at
WestLB Systems Pacific.1

Monday to Friday, nine to five, the stock market in Tokyo was open. The
traders were sitting at their desks, their eyes locked on the screens which were
showing the prices in realtime, their ears on the phone listening to customer’s
desires. With each trade their customers earned or lost some money and de-
pending on which of the two was the case, they were more or less ready to
tolerate whatever they disliked about the bank. In order to have the traders
perform as near to perfect as possible, I was asked to write a program which
would automate a part of their task chain and while I was explained what the
matter is, I faced a very basic trade problem not known to a commoner.

I am not going to torment anyone with the boring details of the internal
business of the bank, but shall try to explain what the problem is using far
more leisure an environment than the trading floor.

1.1 Introduction

Imagine you sit in The Beer Garden in Gaien, Tokyo. It is a great place between
the trees, illuminated by laterns at night, where you make your own barbecue
at your own table and drink tankard for tankard of beer, enjoying the japanese
summer.

Now, Imagine the price of each tankard is changing every second, according
to customer’s demand and the amount on stock. Your every tankard shall cost
a different price than the previous one did and you must try your luck and buy
when it’s cheap. Once you have the beer, you may either drink it2, or sell it to
someone at the nearby table, possibly making a profit.

You are there with two friends. You order three tankards, the other pal
orders two and the third lad orders five. The order was placed at the same time,
and you expect to get all ten tankards on the table for the same price. As the
beer is being filled into the tankards, the price changes, and each tankard costs
a different amount, but amounts are relatively close to each other. Sometimes
they manage to produce two tankards at the same price, if they fill them fast,
but mostly the prices are different. The Beer Garden personnel wants to avoid
offending you and your friends, so they need to allocate available tankards to
the three of you. They have ten tankards before them, a price attached to each,
and must give three of them to you, two to your pal, and five to the third lad,
but they now must choose which tankard goes to which person. Because each
tankard had costed a different price, they shall choose a combination such that
each of you guys has the same average price across the tankards. When they
are done, you will have three tankards, your pal will have two and the third lad
will have five, each tankard will have costed a different price, but the average
price each of you pays per tankard will be about the same.

Sometimes the guys at the bar run out of tankards. We don’t accept that.
Fill it in a glass or in a coffee mug, I don’t care, I want my beer. OK, the
barmen have no problem using a different type of container, normal glasses are

1Westdeutsche Landesbank, a German state bank, the first to show presence on the far
east.

2 It’s what I would do anyway.
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fine, but in order to keep with the amount sold in tankards, they sell beer in
glasses only in units of three, as each tankard can hold three times as much as
a normal glass can. Now, in this scenario, we introduce a thing called a trade
unit. In this case, The Beer Garden personnel has it slightly more difficult,
as they can allocate glasses only in units of three, because some angry God of
theirs forbade them to break down the trade unit.

Now, the question is how to they do this? How to choose which tankard
goes to which person, so that each person has the same average price? Well,
they use EALP, hehe. This is exactly what the algorithm does, allocating goods
between different customers, or different accounts of the same customer, so that
the average price remains the same everywhere.

1.2 Analysis

The problem looked easy at the beginning and the first thought was to use two-
stage simplex to solve it, as it looked like a linear programming problem. After
a second glimpse, it turned out the problem isn’t nearly related to linear pro-
gramming and the idea about this kind of solution vanished. I have coresponded
to many people, some having remarkable degrees and expirience, but noone was
able to propose a nice solution. The one or the other bold idea came out, some
of them being mine, but each of them had proven to be a failure, as I could
either prove their inefficiency mathematically, or find a particular problem they
failed to solve.

After having spent a whole night with a pencil in my hand and Mathematica
at my aid, I came up with few facts which in turn led to EALP.

I believe the problem to be NP Hard, and I am not alone with that thought.
Having such problem means few things. It means that everything related to
our problem has a non-linear character, even if it seems not to be so in the
beginning. It also means that maybe no algorithms exist which are guaranteed
to find an optimal solution.

There is a finite number of possible solutions and we can find the optimal
solution by just trying each in turn, always remembering just the best one we
saw so far.3 Unfortunately, while it works with simple particular problems, no
God can wait the time needed to complete the calculation with more complex
ones and I would like to get my beer before the sun goes nova and the universe
collapses into a grey void. That is pity, for the brute force is the only way known
to produce an optimal solution to a NP Hard problem, if it can be applied. Here
it can obviously not be applied, so we need something else.

Our algorithm does not guarantee to find an optimal solution, but rather to
find a local optimum, given a start value. If the start value is good, the local
optimum it finds will be better. Given different start values, the algorithm will
find different solutions and one of them is possibly the optimal solution of the
problem. Unfortunately there are no known means one could use to tell which
start value is better than any other.

3This kind of problem solving is known as brute force. Simply try all possible combinations
and find the best one. It works well with two people and three tankards, but it fails to complete
in less than 12 minutes on an average Compaq Presario with six people and thirty tankards.
Given how many people fare in The Beer Garden in summer and how much they can drink,
the time needed for brute force attack is not acceptable.
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The Algorithm operates in two stages. In the first stage the algorithm calcu-
lates the start value which I believe is good and then it finds the local optimum
in the second stage. The local optimum which the algorithm finds this way
is good enough to be used in the bank. The program with the EALP engine
produced results quite comparable to those produced by the bank’s current allo-
cation software, and it was far superior to the commercial solution from Reuters,
in both the result quality and calculation speed.

2 Formulation

Now, let us give it some mathematical flare.

2.1 The Problem Table

I see the problem as some kind of matrix. Actually, it is not a matrix because you
cannot operate on it like on any other matrix, you cannot calculate determinants
and similar. It is basically a table. Somehing with few rows and few columns,
just that the rows and columns have a certain influence on each other. I cannot
think of a better name for the thing at this very moment and because I do not
have to think of a better name, I shall call it the problem table.

The problem table has its dimensions. We let the input parameters de-
termine the dimensions and thus the algorithm implementation can allocate a
two-dimensional array to hold the problem table and work with array elements.
This should make the algorithm fast, and indeed, EALP is fast.

Now, when the sugar momma brings the tankards to our table, we look at
them and say few facts:

• Each distinct price involved in what we just see at the table has a column
in the problem table asociated with it.

• Each person who sits at the tabe and awaits her tankards to hit her lips
has a row in the problem table associated with her.

Any field where a column and a row of that kind intersect contains a number
of tankards a particular person buys at a particular price. Everything clear so
far?

I said that every person has her own row in the problem table. Note that
there could be other rows not associated with anyone, but there may not be a
person without a row. Similarily, I said that every price involved in our purchase
has an own column. following the analogy to the rows, there may be a column
which is not associated with a price, but all prices must have their own column.
Now, if a field in the problem table lays at the intersection of a row associated
with a person and a column associated with a price, then it contains the number
of tankards that person buys at that price.

Let’s say the number of people at the table is m and the number of prices
involved in the purchase is n. We add an additional row and we put the sums
of the columns in the corresponding fields of that row. Similarily, we add an
additional column and we put the sums of the rows in the corresponding fields
of that column. Having done that, we add yet another column and store the
averages of the rows in its respective fields. Now the whole thing looks at least
similar to what is on the figure 1.
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price 1 price 2 · · · price n r-sum average
pubber 1 x(1, 1) x(1, 2) · · · x(1, n) sr(1) ar(1)
pubber 2 x(2, 1) x(2, 2) · · · x(2, n) sr(2) ar(2)

...
...

...
. . .

...
...

...
pubber m x(m, 1) x(m, 2) · · · x(m,n) sr(m) ar(m)

c-sum sc(1) sc(2) · · · sc(n) stot atot

We have m thirsty people sitting at the table, looking at us, with desire for
beer in their eyes telling more than thousand words ever could. Each of first m
rows represents one of them and these rows are marked pubber1 to pubberm. We
said that tankards are delivered at different prices and that we have n different
prices. Each of first n columns represents one of these prices and these columns
are marked price1 to pricen. So far, so good.

We must assign each tankard to a person at the table, regardless if she going
to drink the contents or not. If we keep the prices apart while doing it, we can
define a function

lx(i, j) = [num of tankards for person i at price j.] (1)
x(i, j) ∈ N

D(x) = {i, j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}

Knowing what this function x(i, j)returns for each i, j within its definition
area D(x) is the goal we want to reach. You would do good to concentrate
on the values returned by this function instead on how the function calculates
those values. If you take the existence of this function too seriously, you might
be surprised when you see that it does not exist at all. Here, we are simply
assuming that there is a function we can use to discover how many tankards a
particular pubber has paid a particular price for, but later we shall see that it
is only an illusion, created to explain what follows.

Now, we do our allocation after the beer was purchased, so the prices are
constants. We can define a set of prices:

P = {pricej , pricej+1, ... | pricej ∈ R+, j ∈ N, 1 ≤ j ≤ n} (2)

and a function:

sr(k) = R[k] =
n∑
j=1

x(k, j) (3)

which returns the kth element of R. Every time I call this function, I get a
positive natural number back, namely how many tankards the pubber k ordered.
if you risk a glance at the problem table above, you shall see where this function
is called. Since it is a sum of all x(k, j) in its row k and I have no phantasy to
give it a better name, it is called r-sum.

Let us take a glance at the last interresting bunch of constants we have. As
we have said, a particular number of tankards has been purchased at a particular
price. We can define a set of quantities per price:

C = {qtyj , qtyj+1, ... | qtyj ∈ N, j ∈ N, 1 ≤ j ≤ n} (4)
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and a function:

sc(k) = C[k] =
m∑
i=1

x(i, k) (5)

which returns the kth element of C. Every time I call this function, I get a
positive natural number back, namely how many tankards have been purchased
at price k. If you risk a glance at the problem table above, you shall see where
this function is called. Since it is a sum of all x(i, k) in its column, it is called
c-sum.

The value stot is the total number of tankards involved in the purchase. We
define it as:

stot =
m∑
i=1

 n∑
j=1

x(i, j)

 =
m∑
i=1

sr(i) =
n∑
j=1

(
m∑
i=1

x(i, j)

)
=

n∑
j=1

sc(j) (6)

which is the sum of quantities per pubber, as well as the sum of quantities
per price. What does that tell us? Eh? It tells us that we can allocate exactly
as many tankards as have been purchased and that sounds quite logical to me.
The sum of qualtities per pubber is the number of tankards those thirsty people
at the table need. The sum of quantities per price is the number of tankards
available for distribution. These two numbers must be as equal as numbers can
only be.

Somewhere at the beginning I said we are interrested in average prices. Let
us define a function:

ar(k) =

∑n
j=1 (x(k, j) · p(j))∑n

j=1 x(k, j)
(7)

which returns the average price a particular pubber k pays for her tankards.
You can see where this function is called in the problem table above. We
calculate the average for each pubber and we have a value:

atot =

∑n
j=1 (

∑m
i=1 (x(i, j) · p(j)))∑n

j=1 (
∑m
i=1 x(i, j))

(8)

which represents the total average of all tankards at the table, regardless
who drinks from them.

2.2 Equations

Let us take another glance at the equations we have so far:
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sr(k) =
n∑
j=1

x(k, j) (9)

sc(k) =
m∑
i=1

x(i, k)

stot =
m∑
i=1

sr(i) =
n∑
j=1

sc(j)

ar(k) =

∑n
j=1 (x(k, j) · p(j))

sr(k)

atot =

∑n
j=1 (sc(j) · p(j))

stot

The sr is a constant, so is the sc. The values stot and atot are constant as
well, for they can be calculated right at the beginning using constants and won’t
change anymore. What needs to be calculated are values x(i, j) and they must
be numbers which keep our constants constant and bring all ar(k) as close to
each other as possible.

Now, I won’t bother to prove it mathematically, but if the values ar(k) are
close to each other, then they are close to atot as well. In the ideal solution,
all values ar(k) would be the same and in that case they would be necessarily
equal to atot and that’s a fact. Thus, we can use atot as an orientation point
and try to make each ar(k) as close to atot as we only can. While this is helpful,
it does not permit us to make our life easier and calculate the solution on a
row-per-row basis. Why not? Read on, and I shall enlighten you.

Another fact is, a change in any field x(i, j) means also a change in three
other fields. This is absolutely necessary, for the sums of the rows and the
columns must be kept constant. Let’s say you choose a value x(a, b) in the row
a and column b and change it by amount dx. Then you must choose another
row c and another column d and change the values x(c, b) and x(a, d) by −dx,
and the value x(c, d) by dx. This change in four fields simultanously is what I
call flipping.

One thing of importance is to see that values p(k), ar(k) and atot need
not belong to the natural number set, while all other values do. Said in the
language of the implementation, p(k), ar(k) and atot are floating point variables
and everything else is an integer.

3 Run Stages

The algorithm runs in two stages. The first stage provides a good starting point
for the optimisation, which is performed in the second stage.

The two stages are totaly independent of each other regarding the calculation
and each one can be changed to run according to different rules without touching
the other.
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3.1 Stage One (Spreading)

The first stage, named spreading, starts with the zeroed problem table. All
x(i, j) are zero, as are all ar(k). Values p(j), sr(i) and sc(j) are all given and we
have calculated atot using the formula given above. Now we must take quantity
stot and spread it across the problem table, forming one possible solution in
which the constraints hold. This initial solution need not be optimal, but values
sr(i) and sc(j) must give justice to their roles and really be sums of rows and
columns. Having done that, we calculate the values ar(i) and hand over to the
second stage.

How do we spread? Basically, we can do whatever we see fit. It is only
important to find values x(i, j), so that the sum of all x(k, j) in any row k is
reflected in sr(k) and the sum of all x(i, k) in any column k is reflected in sc(k).
One possible way is to use the following:

x(i, j) = Floor

(
sc(j)
stot

· sr(i)
)

(10)

r(i, j) =
sc(j)
stot

· sr(i)− Floor
(
sc(j)
stot

· sr(i)
)

(11)

with Floor() being a function which returns the largest natural number
smaller than or equal to its argument. Is it clear that the sum

Rs =
m∑
i=1

 n∑
j=1

r(i, j)

 (12)

must be a natural number? Is it clear that the equation

m∑
i=1

 n∑
j=1

x(i, j)

+
m∑
i=1

 n∑
j=1

r(i, j)

 = stot (13)

must be true? Yes it is, it is as clear as the sky during the polar night when
thousand stars glow all over it, it is as clear as the blue in the eyes of the Golden
One.4 The equation must hold, for the sum of all r(i, j) is exactly the difference
between stot and the sum of all x(i, j); and the difference between two natural
numbers, first one being the larger, can only be a natural number itself.

What is left to be done is to spread the quantity Rs across the problem
table. For this, iterate through all rows and in each row k check if the value
sr(k) really is the sum of all x(k, j) in that row. If it is not, then find the column
l where the sum of all x(i, l) is not equal sc(l) and there must be such column.
Having found it, add one to x(k, l) and substract one from Rs. Repeat this until
Rs drops to zero.

Are there to many facts in such a short time here? It is a fact that a row
with a sum mismatch must exist as long as Rs is larger than zero. It is also a
fact that a column with a sum mismatch must exist as long as such a row exists.
Furthermore, it is a fact that if there is a sum mismatch, then the actual sum
must be smaller than the required sum. If these facts are unclear, then go get

4Don’t know the Legend Of The Zlatković? check http://www.fh-frankfurt.de/~igor/

tales/index.html
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yourself a mug of your favourite caffeinated beverage and stare at the formulae
above until the fog collapses and these facts become clear.

When this is through, you will have one possible solution in the problem
table. Now it is time to give that solution to the second stage and let the
flipping optimize it further.

3.2 Stage Two (Flipping)

In this stage, we start with a problem table which came to existence in the first
stage. We begin simple and sort for a bit. We sort the columns according to the
corresponding price, smallest first. We end up with reordered columns whose
corresponding prices increase, left to right. Now we sort the rows according to
the value ar(i), smallest first. We end up with rows reordered so that values
ar(1) to ar(m) increase, top to bottom. All sorting operations are done only
on rows labeled pubber something and on the columns labeled price something,
yes? Leave other rows and columns alone.

Now, there are facts. We know that atot is greater than p(1) and also greater
than ar(1). We also know that atot is smaller than p(n) and also smaller than
ar(m). We know this, because atot is the average of p(j) and theoretically
also the average of ar(i) and averages are always between the smallest and the
greatest value they are made of. We can now find the greatest p(j) which is
smaller than or equal to atot and draw a vertical line which divides its column
from the next column. We can find the greatest ar(i) which is smaller than or
equal to atot as well and we can draw a horizontal line which divides its row
from the next one.

price 1 price 2 · · · price n r-sum average
pubber 1 x(1, 1) x(1, 2) · · · x(1, n) sr(1) ar(1) LBA
pubber 2 x(2, 1) x(2, 2) · · · x(2, n) sr(2) ar(2) FFA

...
...

...
. . .

...
...

...
pubber m x(m, 1) x(m, 2) · · · x(m,n) sr(m) ar(m)

c-sum sc(1) sc(2) · · · sc(n) stot atot
LBA FFA

We call the last column which has p(j) smaller than or equal to atot LBA
(Last Below Average) and the first column on the other side may be called FFA
(First After Average). We have a similar situation with the rows. We ended up
with a problem table divided into four quadrants.

Now we do some flipping. In order to make a flip, we need four fields which
are at the intersection between two distinct rows and two distinct columns. Such
fields always form a rectangle, when you look at them and imagine they were
the corner points. We define such set of four fields as flippable set. If we now
have a flippable set where each field lays in a distinct quadrant, then we have
an improvable flipping set.

We define a distance between two rows as an absolute value of the difference
between their ar(i).

d(i, j) = |ar(i)− ar(j)| (14)

10



Now we must iterate through all possible improvable flipping sets. It’s OK,
they are not that many, actually, they are just a few. Having started, measure
the distance between the two rows which build up the current improvable fliping
set. Next, let dx be one and flip. After flipping, recalculate the averages ar(i)
and compare the new distance with the one measured before the flip. If the
distance improved, means if it got smaller, then you have made a good flip
and here you break and start all over again. If the distance didn’t improve,
then flip back, restore the state as it was before the flip and continue with the
next improvable flipping set. When you manage to iterate through all possible
improvable flipping sets without making a good flip, you are done. The current
state of the problem table is then the local optimum.

The whole process is short, because there are not that many improvable
flipping sets. It would not harm to iterate through flippable sets instead, but
it would do no good either. I shall not bother to prove it here, but if you flip
a flippable set which is not an improvable flipping set, you are guaranteed not
to make an improvement of the distance. This is why the flippable sets wherein
no field shares a quadrant with any other field are called improvable.

4 Implementation

There is a fairly simple implementation in C programming language. You can
download it from the following Locations:

• Official EALP page,
http://www.fh-frankfurt.de/~igor/projects/ealp/ealp.tar.gz

If there is an implementation I know nothing about, and I know nothing
about any implementation which does not appear here, please be so king to
drop me a note about it. I would like to see, I would like to know, and I would
like to include a reference to it here.
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